Knockout of the AtCESA2 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis.

نویسندگان

  • Zhaoqing Chu
  • Hao Chen
  • Yiyue Zhang
  • Zhonghui Zhang
  • Nouyan Zheng
  • Bojiao Yin
  • Hongyan Yan
  • Lei Zhu
  • Xiangyu Zhao
  • Ming Yuan
  • Xiansheng Zhang
  • Qi Xie
چکیده

Complete cellulose synthesis is required to form functional cell walls and to facilitate proper cell expansion during plant growth. AtCESA2 is a member of the cellulose synthase A family in Arabidopsis (Arabidopsis thaliana) that participates in cell wall formation. By analysis of transgenic seedlings, we demonstrated that AtCESA2 was expressed in all organs, except root hairs. The atcesa2 mutant was devoid of AtCESA2 expression, leading to the stunted growth of hypocotyls in seedlings and greatly reduced seed production in mature plants. These observations were attributed to alterations in cell size as a result of reduced cellulose synthesis in the mutant. The orientation of microtubules was also altered in the atcesa2 mutant, which was clearly observed in hypocotyls and petioles. Complementary expression of AtCESA2 in atcesa2 could rescue the mutant phenotypes. Together, we conclude that disruption of cellulose synthesis results in altered orientation of microtubules and eventually leads to abnormal plant growth. We also demonstrated that the zinc finger-like domain of AtCESA2 could homodimerize, possibly contributing to rosette assemblies of cellulose synthase A within plasma membranes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)

In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...

متن کامل

Therapeutic Efficacy Analysis of lncRNA NEAT1 Gene Knockout and Apoptosis Induction in Prostate Cancer Cell Line Using CRISPR/Cas9

Background and Objective: Long non-coding ribonucleic acid (lncRNA) has been identified as an important gene regulator and prognostic marker in various cancers. The present study aimed to investigate the effects of Nuclear Paraspeckle Assembly Transcript1 (NEAT1) gene knockout using Clustered Regularly Interspaced Short Palindromic Repeats-associated Protein 9 (CRISPR/Cas9) in PC-3 cell line. ...

متن کامل

Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana

Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...

متن کامل

Differential Responsiveness of Cortical Microtubule Orientation to Suppression of Cell Expansion among the Developmental Zones of Arabidopsis thaliana Root Apex

Τhe bidirectional relationship between cortical microtubule orientation and cell wall structure has been extensively studied in elongating cells. Nevertheless, the possible interplay between microtubules and cell wall elements in meristematic cells still remains elusive. Herein, the impact of cellulose synthesis inhibition and suppressed cell elongation on cortical microtubule orientation was a...

متن کامل

Efficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9

Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 143 1  شماره 

صفحات  -

تاریخ انتشار 2007